
Kuang-hua Chen
Department of Library and Information Science

National Taiwan University

Indexing and Abstracting
Lecture 10 – Index Structure

10-2

Structures for Index Files

Inverted files
Signature files
PAT (Patricia Tree)

10-3

Inverted Files

Each document is assigned a list of keywords or
attributes.
Each keyword (attribute) is associated with
operational relevance weights.
An inverted file is the sorted list of keywords
(attributes), with each keyword having links to
the documents containing that keyword.
Penalty

the size of inverted files ranges from 10% to 300%
of more of the size of the text itself
need to update the index as the data set changes

10-4

Sorted Array for Inverted Files

資訊 4

.

.

.
檢索 2

.

.

.

Index file
Keyword Hists Link Doc.# Link

. .
1
2
7
8
. .
2
5
. .
. .
. .

Document 1

Document 2

Document file
Documents

Postings file

10-5

Structures for Inverted Files

Sorted Arrays
store the list of keywords in a sorted array
using a standard binary search
advantage: easy to implement
disadvantage: updating the index is expensive

Hashing Structures
B-tree
Combinations of these structures

10-6

Sorted Arrays

1. The input text is parsed into a list of words along with
their location in the text. (time and storage consuming
operation)

2. This list is inverted from a list of terms in location
order to a list of terms in alphabetical order.

3. Add term weights, or reorganize or compress the files.

text word location word location word location weight
location order alphabetic order

parse sort weight

10-7

term recon term recno term recno freq
pap 1 ab 2 ab 2 1
report 1 being 2 being 2 1
novel 1 charact 2 charact 2 1
technique 1 human 2 human 2 1
literat 1 sort index 1 remove index 1 1
result 1 literat 1 duplicates literat 1 1
technique 1 novel 1 novel 1 1
index 1 pap 1 pap 1 1

report 1 report 1 1
report 2 report 2 report 2 1
charact 2 result 1 result 1 1
human 2 technique 1 technique 1 2
being 2 technique 1
ab

.. ..

....
..

...

Inversion of Word

10-8

Dictionary and Posting File

term number of postings offset
ab 1 .
being 1 .
charact 1 .
human 1 .
index 1 .
literat 1 .
novel 1 .
pap 1 .
report 2 .
result 1 .
technique 1 .

. .

.

2 1

1 1

1 1 2 1

1 2

Dictionary Posting File

(document #, frequency)

Idea: the file to be
searched should be
as short as possible
split a single file
into two pieces

10-9

Signature Files

basic idea: inexact filter
discard many of nonqualifying items
qualifying items definitely pass the test
“false hits” or “false drops” may also pass accidentally

procedure
Documents are stored sequentially in “text file”.
Their signatures (hash-coded bit patterns) are stored in
the “signature file”.
Scan the signature file, discard nonqualifying documents,
and check the rest, when a query arrives.

10-10

Merits of Signature Files

faster than full text scanning
1 or 2 orders of magnitude faster

modest space overhead
10-20% vs. 10-300% (inversion)

insertions can be handled more easily than
inverted file

append only
no reorganization or rewriting

10-11

Basic Concepts

Use superimposed coding to create signature
Each document is divided into logical blocks
A block contains D distinct non-common words
Each word yields “word signature”
A word signature is a F-bit pattern, with m 1-bit
The word signatures are OR’ed to form block
signature
Block signatures are concatenated to form the
document signature

10-12

Basic Concepts (Continued)

Example (D=2, F=12, m=4)
word signature
資訊 001 000 110 010
檢索 000 010 101 001
block signature 001 010 111 011

Search
Use hash function to determine the m 1-bit positions.
Examine each block signature for 1’s bit positions that
the signature of the search word has a 1.

10-13

Sequential Signature File (SSF)

signature file

1 0 … 1 1
1 1 … 0 1
0 0 … 1 1
.
.
.

.

.

.
0 1 … 1 1
1 0 … 0 1
1 1 … 0 0

d
o
c
u
m
e
n
t
s

N

F bits

pointer file document file

10-14

Bit-block Compression (BC)

Data structures
The sparse vector is divided into groups of
consecutive bits (bit-blocks).
Each bit block is encoded individually.

10-15

Bit-block Compression (BC)
Part I. It is one bit long, and it indicates whether there are

any “1”s in the bit-block (1) or the bit-block is (0). In
the latter case, the bit-block signature stops here.

0000 1001 0000 0010 1000
0 1 0 1 1

Part II. It indicates the number s of “1”s in the bit-block.
It consists of s-1 “1” and a terminating zero.

10 0 0
Part III. It contains the offsets of the “1”s from the

beginning of the bit-block.
0011 10 00

說明：b = 4，距離為 0, 1, 2, 3，編碼為 00, 01, 10, 11
block signature: 01011 | 10 00 | 00 11 10 00

10-16

Search in BC

Search “資訊”
資訊 ==> 0000 0000 0000 0010 0000
the #3 bit-block
signature 01011 | 10 0 0 | 00 11 10 00
OK, there is at least one setting in the #3 bit-
block
Check furthermore. “0” tells us there is only
one setting in the #3 bit-clock. Is it the #2 bit?
Yes, “10” confirms the result

10-17

PAT Trees and PAT Arrays

Problems of tradition IR models
Documents and words are assumed
Keywords must be extracted from the text (indexing)
Queries are restricted to keywords

New indices for text
A text is regarded as a long string
Each position corresponds to a semi-infinite string
(sistring)
no keywords

10-18

Semi-Infinite Strings (Sistring)

Example
是寂寞 慢慢佔領我的心 長夜裡愈來愈冷清 回
憶裡愈來愈孤寂 是後悔 慢慢侵蝕我的心 抹去
了最後的淚滴 從今後 不再為誰哭泣

sistring 1是寂寞 慢慢佔領我的心 …
sistring 2寂寞 慢慢佔領我的心 …
sistring 4 慢慢佔領我的心 長夜 …
sistring 8 領我的心 長夜裡愈來愈 …
sistring 22 回憶裡愈來愈孤寂 是後 …

10-19

PAT Tree

PAT Tree
Patricia tree constructed over all the possible sistrings
of a text

Patricia tree
a digital tree where the individual bits of the keys are
used to decide on the branching
each internal node indicates which bit of the query is
used for branching

absolute bit position
a count of the number of bits to skip

each external node is a sistring

10-20

Example
Text 01100100010111 …
sistring 1 01100100010111 …
sistring 2 1100100010111 …
sistring 3 100100010111 …
sistring 4 00100010111 …
sistring 5 0100010111 …
sistring 6 100010111 …
sistring 7 00010111 …
sistring 8 0010111 ...

1

2

23

1

2

14

2

23

1

2

4 3

15

: external node sistring
(integer displacement)
total displacement of the
bit to be inspected

: internal node
skip counter & pointer

1

21
0 1

2

23

1

1
0 1

0 1

10-21

Text 01100100010111 …
sistring 1 01100100010111 …
sistring 2 1100100010111 …
sistring 3 100100010111 …
sistring 4 00100010111 …
sistring 5 0100010111 …
sistring 6 100010111 …
sistring 7 00010111 …
sistring 8 0010111 ...

2

2

2

4 3

15

1

4

36

2
2

2

3

15

4

36

1

3

47

2
2

2

3

15

4

36

1

3

7 5

84

Search 00101

Example (continued)

10-22

Indexing Points

The above example assumes every position
in the text is indexed.
n external nodes, one for each position in the text

word and phrase searches
sistrings that are at the beginning of words are
necessary

trade-off between size of the index and
search requirements

10-23

Prefix searching

Idea
every subtree of the PAT tree has all the sistrings with a
given prefix
Search

proportional to the query length
exhaust the prefix or up to external node

Search for the prefix
“101” and its answer

1
10

0

1

answer

10
0

10-24

Comparisons

Signature files
Use hashing techniques to produce an index
Advantage

storage overhead is small (10%-20%)

Disadvantages
the search time on the index is linear
some answers may not match the query, thus
filtering must be done

10-25

Comparisons (Continued)

Inverted files
storage overhead (10% ~ 300%)
search time for word searches is logarithmic

PAT arrays
potential use in other kind of searches
phrases
Proximity Searching
longest repetitions
most frequent searching

