A Rule-Based and Corpus-Oriented Approach to Prepositional Phrases Attachment

Kuang-hua Chen and Hsin-Hsi Chen
Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan, R.O.C.
khchen@nlg.csie.ntu.edu.tw, hh_chen@csie.ntu.edu.tw

Abstract
Prepositional Phrase is the key issue in structural ambiguity. Recently, researches in corpora provide the lexical cue of association among prepositions and other words and these information could be used to resolve partly ambiguity resulted from prepositional phrases. Two possible attachments are considered in the existing approaches: either noun attachment or verb attachment. In this paper, four different attachment are told out according to their functionalities: noun attachment, verb attachment, sentence-level attachment, and predicate-level attachment. Both lexical knowledge and semantic knowledge are envolved resolving attachment in the proposed mechanism. Experimental results show that considering more types of prepositional phrases is useful in machine translation.

1 Introduction
Prepositional phrases are usually ambiguous. The well-known sentence shown in the following is a good example.

Kevin looked at the girl with telescope.

Whether the prepositional phrase with telescope modifies the head noun girl or the verb look are not resolved by using only one knowledge source. Many researchers observe text corpora and learn some knowledge based on language model to determine the plausible attachment. For example, we could expect that the aforementioned prepositional phrase is usually attached to verb according to text corpora. However, the correct attachment is dependent of world knowledge sometimes. Some approaches to determination of PPs are reported in literature [Kimball, 1973; Frazier, 1978; Ford et al., 1981; Shieber, 1983; Wilk et al., 1987; Liu, et al., 1990; Chen and Chen, 1992; Hindle and Rooth, 1993; Brill and Resnik, 1994]. These resolutions fall into three categories: syntax-based, semantics-based and corpus-based approaches. The brief discussion are described in the following:

1. Syntax-based
 - Right Association [Kimball, 1973]
 The PPs always modifies the nearest component preceding it.
 - Minimal Attachment [Frazier, 1978; Shieber, 1983]
 The correct attaching point of a PP in a sentence is determined by the number of nodes in parsing tree.

2. Semantics-based
 - Lexical Preference [Ford et al.,1982]
 The real attaching point must satisfy some constraints, e.g., verb features. Different verb accompany with the same PPs may have the different attaching points. The following sentences show the different attaching points.
 I eat an apple on the table.
 I put an apple on the table.
 Preference Semantics [Wilk et al., 1987]
 The method tell us the real attaching point must be determined by the preference of verbs and prepositions.

3. Corpus-based
 - [Liu et al., 1990]
They use semantic score and syntactic score to determine the attaching point. These scores are trained from text corpora.

- **Lexical Association** [Hindle and Rooth, 1993]

 This method applies statistical techniques to discover the lexical association from text corpora. Thus, the attachment of PPs is determined.

- **Model Refinement** [Brill and Resnik, 1994]

 Their approach assumes every PP modifies the immediately previous noun and uses rules trained from text corpora to change the erroneous attachments.

In the sections that follow, we will first present our perspective from machine translation to this problem. Section 3 will discuss the detail resolution to PPs attachment, which considers more different attachments. Section 4 will conduct a series of experiments to investigate our approach. Finally, a few concluding remarks bring this paper to an end.

2 Our Perspective

From the viewpoint of machine translation, in particular, English-Chinese machine translation [Chen and Chen, 1995], the main shortcoming of the approaches mentioned in previous section is that they all consider either PPs modify nouns or PPs modify verbs. Although, PPs usually modify nouns or verbs, there are some counter examples even in the simple sentences like "there is a book on the table" and "The apple has worm in it". In the first example, the PP "on the table" is neither used to modify the copula verb nor the noun phrase "a book". It describes the situation of the whole sentence. The second example shows that the PP "in it" is also not a modifier, but a complement to the preceding noun phrase. That is, the PP has a nonrestrictive usage. To transfer PPs among different languages, we must capture the correct interpretation. Therefore, we distinguish four different prepositional phrases.

- **Predicative Prepositional Phrases (PPP):** PPs that serve as predicates.

 He is at home.

 他在家.

 He found a lion in the net.

 他發現獅子在網子裡.

- **Sentential Prepositional Phrases (SPP):** PPs that serve functions of time and location.

 There is no parking along the street.

 這條街上禁止停車.

 We had a good time in Paris.

 在巴黎我們有一段美好的時光.

- **Prepositional Phrases Modifying Verbs (VPP)**

 I went to a movie with Mary.

 我和瑪莉去看電影。

 I bought a book for Mary.

 我為瑪莉買了一本書。

- **Prepositional Phrases Modifying Nouns (NPP)**

 The man with a hat is my brother.

 戴帽子的人是我哥哥。

 Give me the book on the desk.

 把桌上書給我。

It is obvious that these four different prepositional phrases have their own appropriate positions in Chinese. That is if we determine the type of a prepositional phrase, its position in Chinese is also determined.

3 The Resolution to PP-Attachment

In the previous section, four different types of PPs are defined according to their functionalities. Thus, the resolution to this problem is to determine which type the PPs belong to. The basic steps are:

- Check if it is a PPP.
- Check if it is an SPP.
- Check if it is a VPP.
- Otherwise, it is an NPP.

Now, the problem is what constitutes the mechanism of each step.

Oxford Advanced Learner's Dictionary (OALD) [Hornby, 1989] uses 32 verb patterns to describe the usage of verbs. Table 1 lists these verb patterns. Since some frames defined by OALD cannot be distinguished from each other by the contexts, we define the hyper types for these frames. These definitions are shown in Table 2. That is to say, Ln and Tn will be recognized as Vn and the real type is decided by the verb itself and the type. If a verb is a linking verb and its type is Vn, its real type would be Ln. In addition, the subcategorization frame In/pr is regarded as In and Ipr. [Chen and Chen, 1994] has
proposed a method to determinate the predicate argument structure of an sentence. Once the predicate-argument structure is judged as Vnpr, Ipr, Dprf, Dprt, or Dprw, the underlying prepositional phrase is PPP.

As for SPP, VPP, and NPP, the rules are dependent of the lexical knowledge and semantic usage. That is to say, the semantic tag should be assigned to each word. [Chen and Chen, 1992] describes the semantic hierarchy for noun and verb (shown in Figure 1 and Figure 2). However, manually building a lexicon with semantic tag information is a time-consuming and human-intensive work. Fortunately, an on-line thesaurus provides this information. Roget's thesaurus defines a semantic hierarchy with 1000 leaf nodes shown in Table 3. Each leaf node contain words with this semantic usage, that is, these words have the semantic tags represented by these leaf nodes. We just map these leaf nodes to the semantic definitions listed in Figure 1 and Figure 2. Therefore, nouns and verbs in running texts could be easily assigned semantic tags in our semantic definitions.

In general, four factors contribute the determination of PP-attachment: 1) verbs; 2) accusative nouns; 3) prepositions; and 4) oblique nouns. We use a 4-tuple <V, A1, P, A2> to denote the relationship of PP attachment, where V denotes semantic tag of verbs, A1 denotes the semantic tag of accusative noun, P denotes the preposition and A2 denotes the semantic tag of oblique noun. For example, the following sentence has the 4-tuple <non_speech_act, human, with, object>.

Kevin watched the girl with telescope.

Having the 4-tuple in advance, we could apply 65 rule-templates listed in Appendix to determine what the PP type is by aforementioned steps. That is, apply SPP rule-template first, and then VPP rule-template. If none succeeds, the PP should be an NPP. We summarize the algorithm as follows:

Algorithm 1: Resolution to PP-Attachment

1. Check if it is a PPP according to the predicate-argument structure.
2. Check if it is an SPP according to 21 rule-templates for SPP.
3. Check if it is a VPP according to 44 rule-templates for VPP.
4. Otherwise, it is an NPP.

<table>
<thead>
<tr>
<th>Types</th>
<th>Subcategorization Frames</th>
<th>Types</th>
<th>Subcategorization Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>Linking verb + adj.</td>
<td>Tng</td>
<td>Transitive verb + noun + -ing form</td>
</tr>
<tr>
<td>Ln</td>
<td>Linking verb + noun</td>
<td>Tni</td>
<td>Transitive verb + noun + infinitive</td>
</tr>
<tr>
<td>I</td>
<td>Intransitive verb</td>
<td>Cna</td>
<td>Complex-transitive verb + noun + adj.</td>
</tr>
<tr>
<td>Ipr</td>
<td>Intransitive verb + prep.</td>
<td>Cnn</td>
<td>Complex-transitive verb + noun + noun</td>
</tr>
<tr>
<td>Ip</td>
<td>Intransitive verb + particle</td>
<td>Cnn/a</td>
<td>Complex-transitive verb + noun + as + noun (adj.)</td>
</tr>
<tr>
<td>In/pr</td>
<td>Intransitive verb + noun or prep.</td>
<td>Cnt</td>
<td>Complex-transitive verb + noun + to-infinitive</td>
</tr>
<tr>
<td>It</td>
<td>Intransitive verb + to-infinitive</td>
<td>Cng</td>
<td>Complex-transitive verb + noun + -ing form</td>
</tr>
<tr>
<td>Tn</td>
<td>Transitive verb + noun</td>
<td>Cni</td>
<td>Complex-transitive verb + noun + infinitive</td>
</tr>
<tr>
<td>Tnpr</td>
<td>Transitive verb + noun + prep.</td>
<td>Dnn</td>
<td>Double-transitive verb + noun + noun</td>
</tr>
<tr>
<td>Tnp</td>
<td>Transitive verb + noun + particle</td>
<td>Dnpr</td>
<td>Double-transitive verb + noun + prep.</td>
</tr>
<tr>
<td>Tf</td>
<td>Transitive verb + finite that-clause</td>
<td>Dnf</td>
<td>Double-transitive verb + noun + finite that-clause</td>
</tr>
<tr>
<td>Tw</td>
<td>Transitive verb + wh-clause</td>
<td>Dprf</td>
<td>Double-transitive verb + prep. + finite that-clause</td>
</tr>
<tr>
<td>Ti</td>
<td>Transitive verb + to-infinitive</td>
<td>Dnw</td>
<td>Double-transitive verb + noun + wh-clause</td>
</tr>
<tr>
<td>Tnt</td>
<td>Transitive verb + noun + to-infinitive</td>
<td>Dprw</td>
<td>Double-transitive verb + prep. + wh-clause</td>
</tr>
<tr>
<td>Tg</td>
<td>Transitive verb + -ing form</td>
<td>Dnt</td>
<td>Double-transitive verb + noun + to-infinitive</td>
</tr>
<tr>
<td>Tsg</td>
<td>Transitive verb + noun's + -ing form</td>
<td>Dprt</td>
<td>Double-transitive verb + prep. + to-infinitive</td>
</tr>
</tbody>
</table>
Table 2 Hypertypes for Predicate-Argument Structures

<table>
<thead>
<tr>
<th>Hypertypes</th>
<th>Types</th>
<th>Hypertypes</th>
<th>Types</th>
<th>Hypertypes</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vnpr</td>
<td>Dnpr, Tnpr</td>
<td>I</td>
<td>I</td>
<td>Cna</td>
<td>Cna</td>
</tr>
<tr>
<td>Vn</td>
<td>Ln, Tn</td>
<td>Ipr</td>
<td>Ipr</td>
<td>Cnn/a</td>
<td>Cnn/a</td>
</tr>
<tr>
<td>Vnt</td>
<td>Cnt, Dnt, Tnt</td>
<td>Ip</td>
<td>Ip</td>
<td>Dnf</td>
<td>Dnf</td>
</tr>
<tr>
<td>Vni</td>
<td>Cni, Tni</td>
<td>Tnp</td>
<td>Tnp</td>
<td>Dprf</td>
<td>Dprf</td>
</tr>
<tr>
<td>Vng</td>
<td>Cng, Tng</td>
<td>Tf</td>
<td>Tf</td>
<td>Dnw</td>
<td>Dnw</td>
</tr>
<tr>
<td>Vnn</td>
<td>Cnn, Dnn</td>
<td>Tw</td>
<td>Tw</td>
<td>Dprw</td>
<td>Dprw</td>
</tr>
<tr>
<td>Vt</td>
<td>It, Tt</td>
<td>Tg</td>
<td>Tg</td>
<td>Dprt</td>
<td>Dprt</td>
</tr>
<tr>
<td>La</td>
<td>La</td>
<td>Tsg</td>
<td>Tsg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Classification of Roget's Thesaurus

<table>
<thead>
<tr>
<th>CLASS</th>
<th>SECTION</th>
<th>TAG</th>
<th>CLASS</th>
<th>SECTION</th>
<th>TAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td>RELATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existence</td>
<td>1 - 8</td>
<td>SPACE</td>
<td>In General</td>
<td>180 - 191</td>
</tr>
<tr>
<td></td>
<td>Relation</td>
<td>9 - 24</td>
<td></td>
<td>Dimensions</td>
<td>192 - 239</td>
</tr>
<tr>
<td></td>
<td>Quantity</td>
<td>25 - 57</td>
<td></td>
<td>Form</td>
<td>240 - 263</td>
</tr>
<tr>
<td></td>
<td>Order</td>
<td>58 - 83</td>
<td></td>
<td>Motion</td>
<td>264 - 315</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>84 - 105</td>
<td></td>
<td>In General</td>
<td>316 - 320</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>106 - 139</td>
<td></td>
<td>Inorganic</td>
<td>321 - 356</td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td>140 - 152</td>
<td></td>
<td>Organic</td>
<td>357 - 449</td>
</tr>
<tr>
<td></td>
<td>Causation</td>
<td>153 - 179</td>
<td></td>
<td>In General</td>
<td>820 - 826</td>
</tr>
<tr>
<td>INTELLECT</td>
<td>Formation of Ideas</td>
<td>450 - 515</td>
<td>AFFECTIONS</td>
<td>Personal</td>
<td>827 - 887</td>
</tr>
<tr>
<td></td>
<td>Communication of Ideas</td>
<td>516 - 599</td>
<td></td>
<td>Sympathetic</td>
<td>888 - 921</td>
</tr>
<tr>
<td>VOLITION</td>
<td>Individual</td>
<td>600 - 736</td>
<td></td>
<td>Moral</td>
<td>922 - 975</td>
</tr>
<tr>
<td></td>
<td>Intersocial</td>
<td>737 - 819</td>
<td></td>
<td>Religious</td>
<td>975 - 1000</td>
</tr>
<tr>
<td>entity</td>
<td>+ concrete</td>
<td>+ animate</td>
<td>+ human (e.g. boy)</td>
<td>- human (e.g. cat)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>- animate</td>
<td>object (e.g. card)</td>
<td>vehicle (e.g. car)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adv</td>
<td>frequent (e.g. time)</td>
<td>manner (e.g. way)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>location (e.g. bookstore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>direction (e.g. south)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dimension (e.g. width)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ adv</td>
<td>space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>time (e.g. April)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>order (e.g. regularity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- concrete</td>
<td>event (e.g. earthquake)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>motion (e.g. transfer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>number (e.g. dozen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract (e.g. fact)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- adv</td>
<td>form (e.g. frame)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>product (e.g. writing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>religion (e.g. heaven)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sensation (e.g. pain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>volition (e.g. will)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Semantic Tags for Nouns

<table>
<thead>
<tr>
<th>happening</th>
<th>state</th>
<th>- mental (e.g. cost, have, own)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ mental (e.g. know, think, like)</td>
<td></td>
</tr>
<tr>
<td>linking (e.g. become, grow, look)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perception (e.g. see, taste, feel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>action</th>
<th>act</th>
<th>+ mental (e.g. realize, understand, recognize)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- mental</td>
<td>- speech act (e.g. catch, hit, kill)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ speech act (e.g. say, tell, state)</td>
</tr>
<tr>
<td>activity</td>
<td>+ mental</td>
<td>- mention (e.g. work, drive, draw)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ mention (e.g. come, fall, go)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ mental (e.g. remember, learn, read)</td>
</tr>
</tbody>
</table>
5 Experiments
The Penn Treebank [Marcus et al., 1993] is used as the testing corpus, which consists of over 4.5 million words of American English. The following is a real example extracted from this treebank.

```plaintext
(S (ADVP (NP Next week) )
(S (NP (NP some inmates)
(VP released
(ADVP early)
(PP from
(NP the Hampton County jail

(PP in
(NP Springfield)))))))))

will be
(VP wearing
(NP (NP a wristband)
(SBARQ
(WHNP that)
(S (NP T)
(VP hooks up
(pp with
(NP a special jack

(NP their home phones)))))))
```

The PPs contained in Penn Treebank are collected and associated with one label of PPP, SPP, VPP, or NPP. For example, the aforementioned PPs are extracted as follows.

```plaintext
<from the Hampton County jail, VPP>
<in Springfield, NPP>
<with a special jack, VPP>
<on their home phones, NPP>
```

These extracted PPs constitute the standard set and then the attachment algorithm shown in previous section are applied to attaching the PPs. Finally, the attached PPs are compared to the standard set for performance evaluation. The results are shown in Table 8.

Table 8 Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>VPP</td>
<td>6392</td>
<td>4923</td>
</tr>
<tr>
<td>NPP</td>
<td>7230</td>
<td>7230</td>
</tr>
<tr>
<td>PPP</td>
<td>387</td>
<td>387</td>
</tr>
<tr>
<td>Total</td>
<td>14750</td>
<td>13290</td>
</tr>
</tbody>
</table>

6 Concluding Remarks
Many approaches are proposed to build predicate-argument structures in dictionaries automatically. The statistics-based approach and linguistic theory are integrated to determine the predicate-argument structures in the chapter. These two kinds of methods are complementary. Statistics-based approach is robust. It provides simple language models to analyze unrestricted texts. However, it may need large completely-annotated corpus to treat complex linguistic phenomena. Linguistic theory gives such a supplement. Well-formed patterns can be explained properly by universal principles, so that they can be formulated in terms of rules easily. The experimental results show that the integrated mechanisms are useful for further researches on large volume of real texts.

Reference

The Mental Representation of Grammatical Relations (Bresnan, J. Eds.), MIT Press, 1982, pp. 727-796.

Appendix

The following lists rule-templates for PP-attachment. Every template consists of four elements \(<V, M, P, N2>\). The curl bracket pair denotes \(\text{OR}\), the underline denotes \(\text{DON'T CARE}\) and \(~\) denotes \(\text{NOT}\).

I. Rule-template for SPP

1. \(<_,_,_,\text{about},\{\text{time}\}>\)
2. \(<_,_,_,\text{across},\{\text{location}\}>\)
3. \(<_,_,_,\text{after},\{\text{time}\}>\)
4. \(<_,_,_,\text{along},\{\text{location}\}>\)
5. \(<_,_,_,\text{among},\{\text{location}\}>\)
6. \(<_,_,_,\text{at},\{\text{location, time}\}>\)
7. \(<_,_,_,\text{before},\{\text{time}\}>\)
8. \(<_,_,_,\text{between},\{\text{location, time}\}>\)
9. \(<_,_,_,\text{by},\{\text{time}\}>\)
10. \(<_,_,_,\text{during},\{\text{time}\}>\)
11. \(<_,_,_,\text{in},\{\text{location, time}\}>\)
12. \(<_,_,_,\text{in_front_of},\{\text{location}\}>\)
13. \(<_,_,_,\text{near},\{\text{location}\}>\)
14. \(<_,_,_,\text{next_to},\{\text{location}\}>\)
15. \(<_,_,_,\text{on},\{\text{time}\}>\)
16. \(<_,_,_,\text{out_of},\{\text{abstract, location}\}>\)
17. \(<_,_,_,\text{over},\{\text{location, time}\}>\)
18. \(<_,_,_,\text{through},\{\text{abstract, event, time}\}>\)
19. \(<_,_,_,\text{under},\{\text{time}\}>\)
20. \(<_,_,_,\text{with},\{\text{abstract}\}>\)
21. \(<_,_,_,\text{without},\{\text{abstract}\}>\)

II. Rule-template for VPP

1. \(<\text{motion},_,_,\text{about},\{\text{object, location}\}>\)
2. \(<\text{at_ment},_,_,\text{about},\{\text{object}\}>\)
3. \(<\text{action},_,_,\text{after},\{\text{concrete}\}>\)
4. \(<\text{at_ment},\{\text{abstract, event}\},_,\{\text{event, no, time}\}>\)
5. \(<_,_,_,\text{across},\{\text{location, object}\}>\)
6. \(<\{\text{at_nonmen, ai_nonmen}\},_,\text{along},\{\text{location, object}\}>\)
7. \(<\text{~motion},_,\{\text{concrete, location}\},_,\{\text{concrete, location}\}>\)
8. \(<\{\text{at_nonmen, ai_nonmen}\},_,\text{at},\{\text{animate, object}\}>\)
9. \(<\{\text{at_nonmen, ai_nonmen}\},_,\text{at},\{\text{location, object}\}>\)
10. \(<\text{action},_,_,\text{after},\{\text{concrete}\}>\)
11. \(<\text{at_ment},\{\text{abstract, event}\},_,\{\text{event, no, time}\}>\)
12. \(<\{\text{at_nonmen, ai_nonmen}\},\{\text{event, object}\},_,\{\text{abstract, concrete, location}\}>\)
13. \(<\{\text{at_nonmen, ai_nonmen}\},\{\text{event, object}\},_,\{\text{time}\}>\)
14. \(<_,_,_,\text{by},\{\text{location, object}\}>\)
15. \(<_,_,_,\text{by},\{\text{manner}\}>\)
16. \(<_,_,_,\text{by},\{\text{location, object}\}>\)
17. \(<_,_,_,\text{by},\{\text{abstract, event, object, vehicle}\}>\)
18. \(<_,_,_,\text{by},\{\text{animate}\}>\text{ passive voice}\)
19. \(<_,_,_,\text{for},\{\text{time}\}>\)
20. \(<\text{motion},_,_,\text{for},\{\text{location}\}>\)
21. \(<\text{linking},_,_,\text{for},\{\text{abstract, concrete, event}\}>\)
22. \(<_,_,_,\text{for},\{\text{abstract, event, object}\}>\)
23. \(<_,_,_,\text{for},\{\text{animate}\}>\)
24. \(<\text{motion, speech_act},_,_,\text{from, entity}\>\)
25. <motion, ___ in, {location, object}>
26. <___, ___ in, time>
27. <___, ___ in, vehicle>
28. <ai_nonmen, ___ in_front_of, {concrete, location}>
29. <ai_nonmen, ___ inside, {concrete, location}>
30. <___, ___ into, {abstract, concrete, location}>
31. <act, ___ like, ___>
32. <___, ~{location, object}, near, {location, object}>
33. <___, ~{location, object}, next_to, {location, object}>
34. <{at_nonmen, ai_nonmen}, (event, object), on, {concrete, location, object}>
35. <___, ___ on, event>
36. <___, ___ on_to, {location, object}>
37. <motion, ___ out_of, {concrete, location}>
38. <___, ___ over, {abstract, event}>
39. <motion, ___ over, {concrete, location}>
40. <ai_nonmen, ___ through, {location, object}>
41. <{ai_nonmen, at_nonmen}, __, under, {abstract, object}>
42. <___, ___ until, time>
43. <at_nonmen, __, with, object>
44. <at_nonmen, __, with, animate>
45. <at_nonmen, __, without, object>
46. <at_nonmen, __, without, animate>